String Matching

By Joshua Yudaken

Terms

- Haystack
- A string in which to search *Needle
- The string being searched for
- find the needle in the haystack

Basic Algorithm

- For each letter in the haystack
- Check if the needle is present

$$
\begin{aligned}
& \text { for (int } k=0 ; k<(\text { strlen(haystack })-\text { strlen(needle })+1) ; k++) \\
& \text { if }(\text { memcmp(haystack,needle,strlen(needle) })==0) \\
& \text { return true; }
\end{aligned}
$$

return false;

Boyer-Moore Algorithm

Haystack = "jim saw it at a barbershop"
Needle = "barber"

JIM SAW IT AT THE BARBERSHOP

BARBER

Boyer-Moore Algorithm

Haystack = "jim saw it at a barbershop"
Needle = "barber"

JIM SAW IT AT THE BARBERSHOP

BARBER

Boyer-Moore Algorithm

Haystack = "jim saw it at a barbershop"
Needle = "barber"

JIM SAW IT AT THE BARBERSHOP

Boyer-Moore Algorithm

Haystack = "jim saw it at a barbershop"
Needle = "barber"

JIM SAW IT AT THE BARBERSHOP

Boyer-Moore Algorithm

Haystack = "jim saw it at a barbershop"
Needle = "barber"

JIM SAW IT AT THE BARBERSHOP

Boyer-Moore Algorithm

Haystack = "jim saw it at a barbershop"
Needle = "barber"

JIM SAW IT AT THE BARBERSHOP

BARBER

Space/Time Tradeoff

- Create a 'shift table' for the search

For "barber": [a: 4, b: 2, c: 6, d: 6, e: 1,...,r: 3,..., z: 6, `: 6]

- Set every element in the shift table to the length of the needle
- Go through each letter (from the second last to the first)
of the needle
- If the distance from the letter to the end of the needle, is less than the letters current value in the shift table
- update the shift table with the distance to the end of the needle

Best when

- The "alphabet" used in the haystack is much larger than that of the needle.
* The haystack is long
- The same needle is to be used in many different searches
* In other cases, use strstr()!
- Or a different available function.

